
Performance Improved Architecture of
Majority Logic Decoder with Difference-Set

decoder for High data rate Applications
C.Rajeswari Sengunthar Engineering College, chandranrajes@gmail.com

Abstract

To prevent soft errors from causing data corruption, memories are commonly protected with Error Correction Codes (ECCs). To minimize the
impact of the ECC on memory complexity simple codes are commonly used. For example, Single Error Correction (SEC) codes, like Hamming codes are
widely used. Power consumption can be reduced by first checking if the word has errors and then perform the rest of the decoding only when there is errors
.Nowadays, single event upsets (SEUs) altering digital circuits are becoming a bigger concern for memory applications. Among the ECC codes that meet the
requirements of higher error correction capability and low decoding complexity, cyclic block codes have been identified as good candidates, due to their
property of being majority logic (ML) decodable. Majority logic decodable codes are suitable for memory applications due to their capability to correct a large
number of errors. However, they require a large decoding time that impacts memory performance. The drawback of ML decoding is that, for a coded word of
N-bits, it takes N cycles in the decoding process, posing a big impact on system performance. The proposed fault-detection method significantly reduces
memory access time when there is no error in the data read. The technique uses the majority logic decoder itself to detect failures, which makes the area
overhead minimal and keeps the extra power consumption low. The initiative of using the ML decoder circuitry as a fault detector so that read operations are
accelerated with almost no supplementary hardware cost. The results show that the properties of DSCC-LDPC enable efficient fault detection.

Keywords —Block codes, difference-set, error correction codes (ECCs), low-density parity check (LDPC), majority logic, memory.

—————————— ——————————

1. INTRODUCTION

The impact of technology scaling - smaller dimensions, higher
integration densities, and lower operating voltages has come
to a level that reliability of memories is put into jeopardy,
not only in extreme radiation environments like spacecraft and
avionics electronics, but also at normal terrestrial environments .
Especially, SRAM memory failure rates are increasing
significantly, therefore posing a major reliability concern for
many applications. Some commonly used mitigation techniques
are:

• Triple modular redundancy (TMR);
• Error correction codes (ECCs).

TMR is a special case of the von Neumann method consisting
of three versions of the design in parallel, with a majority voter
selecting the correct output. As the method suggests, the
complexity overhead would be three times plus the complexity of
the majority voter and thus increasing the power consumption.
For memories, it turned out that ECC codes are the best way to
mitigate memory soft errors.

For terrestrial radiation environments where there is a low soft

error rate (SER), codes like single error correction and double

error detection (SEC–DED), are a good solution, due to their low

encoding and decoding complexity. However, as a consequence

of augmenting integration densities, there is an increase in the

number of soft errors, which produces the need for higher error

correction capabilities. The usual multierror correction codes,

such as Reed–Solomon (RS) or Bose–Chaudhuri–Hocquenghem

(BCH) are not suitable for this task. The reason for this is that

they use more sophisticated decoding algorithms, like complex

algebraic (e.g., floating point operations or logarithms) decoders

that can decode in fixed time, and simple graph decoders, that use

iterative algorithms (e.g., belief propagation). Both are very

complex and increase computational costs .

In this paper, we will focus on one specific type of LDPC
codes, namely the difference-set cyclic codes (DSCCs), which is
widely used in the Japanese teletext system or FM multiplex
broadcasting systems. The main reason for using ML decoding is
that it is very simple to implement and thus it is very practical
and has low complexity. The drawback of ML decoding is that,
for a coded word of -bits, it takes cycles in the decoding process,
posing a big impact on system performance .

One way of coping with this problem is to implement parallel
encoders and decoders. This solution would enormously increase
the complexity and, therefore, the power consumption. As most
of the memory reading accesses will have no errors, the decoder
is most of the time working for no reason. This has motivated the
use of a fault detector module that checks if the codeword
contains an error and then triggers the correction mechanism
accordingly. In this case, only the faulty code word need
correction, and therefore the average read memory access is
speeded up, at the expense of an increase in hardware cost and
power consumption. A similar proposal has been presented in for
the case of flash memories.

The simplest way to implement a fault detector for an ECC is
by calculating the syndrome, but this generally implies adding
another very complex functional unit. This paper explores the
idea of using the ML decoder circuitry as a fault detector so that
read operations are accelerated with almost no additional
hardware cost. The results show that the properties of DSCC-
LDPC enable efficient fault detection.

The remainder of this paper is organized as follows. Section II
gives an overview of existing ML decoding solutions; Section III
presents the novel ML detector/decoder (MLDD) using
difference-set cyclic codes; Section IV discusses the results
obtained for the different versions in respect to effectiveness,
performance, and area and power consumption. Finally, Section
V discusses conclusions and gives an outlook onto future work.

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

297

IJSER © 2013
http://www.ijser.org

IJSER

Fig. 1. Memory system schematic with MLD.

2. EXISTENT MAJORITY LOGIC DECODING (MLD)
SOLUTIONS

MLD is based on a number of parity check equations which
are orthogonal to each other, so that, at each iteration, each code-
word bit only participates in one parity check equation, except the
very first bit which contributes to all equations. For this reason,
the majority result of these parity check equations decide the
correctness of the current bit under decoding.

MLD was first mentioned for the Reed–Muller codes. Then, it
was extended and generalized for all types of systematic linear
block codes that can be totally orthogonal zed on each codeword
bit.

A generic schematic of a memory system is depicted in Fig. 1
for the usage of an ML decoder. Initially, the data words are en-
coded and then stored in the memory. When the memory is read,
the codeword is then fed through the ML decoder before sent to
the output for further processing. In this decoding process, the
data word is corrected from all bit-flips that it might have
suffered while being stored in the memory.

There are two ways for implementing this type of decoder. The

first one is called the Type-I ML decoder, which determines, upon

XOR combinations of the syndrome, which bits need to be

corrected. The second one is the Type-II ML decoder that

calculates directly out of the codeword bits the information of

correctness of the current bit under decoding [6]. Both are quite

similar but when it comes to implementation, the Type-II uses

less area, as it does not calculate the syndrome as an intermediate

step. Therefore, this paper focuses only on this one.

A. Plain ML Decoder

As described before, the ML decoder is a simple and powerful
decoder, capable of correcting multiple random bit-flips
depending on the number of parity check equations. It consists of
four parts: 1) a cyclic shift register; 2) an XOR matrix; 3) a
majority gate; and 4) an XOR for correcting the codeword bit
under decoding, as illustrated in Fig. 2.

The input signal is initially stored into the cyclic shift register
and shifted through all the taps. The intermediate values in each
tap are then used to calculate the results{BJ}
of the check sum equations from the XOR matrix. In the N th

cycle, the result has reached the final tap, producing the output
signal y

As stated before, input might correspond to wrong data
corrupted by a soft error. To handle this situation, the decoder
would behave as follows. After the initial step, in which the
codeword is loaded into the cyclic shift register, the decoding
starts by calculating the parity check equations hardwired in the
XOR matrix. The resulting sums are then forwarded to the
majority gate for evaluating its correctness. If the number of 1’s

received in {BJ} is greater than the number of 0’s that would
mean that the current bit under decoding is wrong and a signal to
correct it would be triggered. Otherwise, the bit under decoding
would be correct and no extra operations would be needed on it.

In the next step, the content of the registers are rotated and
the above procedure is repeated until all N codeword bits have
been processed. Finally, the parity check sums should be zero
if the codeword has been correctly decoded. The whole
algorithm is depicted in Fig. 3. The previous algorithm needs
as many cycles as the number of bits in the input signal, which
is also the number of taps, N in the decoder. This is a big
impact on the performance of the system, depending on the
size of the code. For example, for a codeword of 73 bits, the
decoding would take 73 cycles, which would be excessive for
most applications.

B. Plain MLD with Syndrome Fault Detector
(SFD)

In order to improve the decoder performance, alternative de-

signs may be used. One possibility is to add a fault detector by

calculating the syndrome, so that only faulty codeword are

decoded. Since most of the code words will be error free, no

further correction will be needed, and therefore performance will

not be affected. Although the implementation of an SFD reduces

the average latency of the decoding process, it also adds

complexity to the design (see Fig. 4).

The SFD is an XOR matrix that calculates the syndrome based

on the parity check matrix. Each parity bit results in a syndrome

equation. Therefore, the complexity of the syndrome calculator

increases with the size of the code. A faulty codeword is detected

when at least one of the syndrome bits is “1.” This triggers the

MLD to start the decoding, as explained before. On the other

hand, if the codeword is error-free, it is forwarded directly to the

output, thus saving the correction cycles.

In this way, the performance is improved in exchange of an
additional module in the memory system: a matrix of XOR

gates to resolve the parity check matrix, where each check bit
results into a syndrome equation. This finally results in a quite
complex module, with a large amount of additional hardware
and power consumption in the system.

3. PROPOSED ML DETECTOR/DECODER

This section presents a modified version of the ML decoder
that improves the designs presented before. Starting from the
original design of the ML decoder introduced in [8], the
proposed ML detector/decoder (MLDD) has been
implemented using the difference-set cyclic codes (DSCCs).
This code is part of the LDPC codes, and, based on their
attributes, they have the following properties:

• Ability to correct large number of errors;

• sparse encoding, decoding and checking circuits
synthesizable into simple hardware;

• Modular encoder and decoder blocks that allow an
efficient hardware implementation;

• Systematic code structure for clean partition of
information and code bits in the memory.

An important thing about the DSCC is that its systematical

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

298

IJSER © 2013
http://www.ijser.org

IJSER

distribution allows the ML decoder to perform error detection in
a simple way, using parity check sum. However, when multiple
errors accumulate in a single word, this mechanism may
misbehave, as explained in the following.

In the simplest error situation, when there is a bit-flip in a

codeword, the corresponding parity check sum will be “1,” as

shown in Fig. 5(a). This figure shows a bit-flip affecting bit 42 of

a codeword with length N = 73 and the related check sum that

produces a “1”. However, in the case of Fig. 5(b), the codeword

is affected by two bit-flips in bit 42 and bit 25, which participate

in the same parity check equation. So, the check sum is zero as

the parity does not change. Finally, in Fig. 5(c), there are three

bit-flips which again are detected by the check sum (with a “1”).

As a conclusion of these examples, any number of odd bit- flips

can be directly detected, producing a “1” in the corresponding .

The problem is in those cases with an even num-

bers of bit-flips, where the parity check equation would not

detect the error.

In this situation, the use of a simple error detector based on
parity check sums does not seem feasible, since it cannot
handle “false negatives” (wrong data that is not detected).
However, the alternative would be to derive all data to the
decoding process (i.e., to decode every single word that is
read in order to check its correctness), as explained in
previous sections, with a large performance overhead.

Since performance is important for most applications, we
have chosen an intermediate solution, which provides a good
reliability with a small delay penalty for scenarios where up to
five bit-flips may be expected (the impact of situations with
more than five bit-flips will be analyzed in Section IV-A).
This proposal is one of the main contributions of this paper,
and it is based on the following hypothesis:

Given a word read from a memory protected with
DSCC codes, and affected by up to five bit-flips, all
errors can be detected in only three decoding cycles.

This is a huge improvement over the simpler case, where
decoding cycles are needed to guarantee that errors are

detected.

The proof of this hypothesis is very complex from the
mathematical point of view. Therefore, two alternatives have
been used in order to prove it, which are given here.

• Through simulation, in which exhaustive experiments
have been conducted, to effectively verify that the
hypothesis applies.

• Through a simplified mathematical proof for the
particular case of two bit-flips affecting a single word
(see Appendix).

For simplicity, and since it is convenient to first describe
the chosen design, let us assume that the hypothesis is true
and that only three cycles are needed to detect all errors
affecting up to five bits (this will be confirmed in Section IV).

In general, the decoding algorithm is still the same as the
one in the plain ML decoder version. The difference is that,
instead of decoding all codeword bits by processing the ML
decoding during N cycles, the proposed method stops
intermediately in the third cycle, as illustrated in Fig. 6.

If in the firt three cycles of the decoding process, the eval-
uation of the XOR matrix for all {BJ} is “0,” the codeword

is determined to be error-free and forwarded directly to the
output. If the {BJ} contain in any of the three cycles at least a
“1,” the proposed method would continue the whole decoding
process in order to eliminate the errors.

A detailed schematic of the proposed design is shown in
Fig. 7. The figure shows the basic ML decoder with an -tap
shift register, an XOR array to calculate the orthogonal parity
check sums and a majority gate for deciding if the current bit
under decoding needs to be inverted. Those components are
the same as the ones for the plain ML decoder shown in Fig.
2. The additional hardware to perform the error detection is
illustrated in Fig. 7 as: i) the control unit which triggers a
finish flag when no errors are detected after the third cycle and
ii) the output tristate buffers. The output tristate buffers are
always in high impedance unless the control unit sends the
finish signal so that the current values of the shift register are
forwarded to the output .

The control schematic is illustrated in Fig. 8. The control
unit manages the detection process. It uses a counter that
counts up to three, which distinguishes the first three iterations
of the ML decoding. In these first three iterations, the control
unit evaluates the by combining them with the OR1
function. This value is fed into a three-stage shift register,
which holds the results of the last three cycles. In the third
cycle, the OR2 gate evaluates the content of the detection
register. When the result is “0,” the FSM sends out the finish
signal indicating that the processed word is error-free. In the
other case, if the result is “1,” the ML decoding process runs
until the end.

This clearly provides a performance improvement respect to

the traditional method. Most of the words would only take three

cycles (five, if we consider the other two for input/output) and

only those with errors (which should be a minority) would need

to perform the whole decoding process. More information about

performance details will be provided in the next sections.

The schematic for this memory system (see Fig. 9) is very
similar to the one in Fig. 1, adding the control logic in the
MLDD module.

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

299

IJSER © 2013
http://www.ijser.org

IJSER

Fig. 2. Schematic of an ML decoder. I) cyclic shift register. II) XOR matrix. III) Majority gate. IV) XOR for correction.

Fig. 5. Single check equation of a β ₃ ↨₃ ML decoder. (a) One bit-flip.
(b) Two bit-flips. (c) Three bit-flips.

Fig. 3. Flowchart of the ML algorithm.

Fig. 4. Memory system schematic of an ML decoder with SFD.

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

300

IJSER © 2013
http://www.ijser.org

IJSER

Fig. 6. Flow diagram of the MLDD algorithm.

Fig. 7. Schematic of the proposed MLDD. i) Control unit. ii) Output tristate buffers.

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

301

IJSER © 2013
http://www.ijser.org

IJSER

TABLE I
DSCC LENGTHS

TABLE II
NUMBER OF COMBINATIONS FOR TWO AND FOUR BIT-FLIPS WITH DIFFERENT

CODE LENGTHS

Fig. 8. Schematic of the control unit.

Fig. 9. Memory system schematic of an MLDD.

4. SIMULATION RESULTS AND DISCUSSION

Here, experimental results to measure the effectiveness, per-

formance and area of the proposed technique will be presented.

A. Effectiveness

Here, the hypothesis that any error pattern affecting up to five

bits in a word can be detected in just three cycles of the decoding

process will be verified. Additionally, the detection of errors

affecting a larger number of bits is also briefly discussed.

As stated in previous sections, an odd number of errors will
not pose any problem to a traditional parity check detector,
but an even number will. Therefore, this is the scenario that
has been studied.

Several word widths have been considered in order to perform

the experiments. The details are shown in Table I, where, for

each size , the number of data and parity bits are stated.

Given a size , all combinations of two and four bit-flips on
a word have been calculated, in order to study all of the
possible cases. The number of combinations is given by

(1)

where is the number of bit-flips.

The number of combinations can be seen in Table II for
different values of with double and quadruple errors. As
expected, increasing the code length implies an exponential
growth of the number of combinations, and therefore, of the
computational time.

All combinations in Table II have been simulated, and the
results can be seen in Tables III and IV.

Table III shows the results for errors with two bit flips.
These results confirm that with only one decoding cycle, the
detection method is covering more than 90% of the error
patterns for all N. The second cycle increases the percentage
of detection and after the third one, 100% of the errors are
detected.

TABLE III
EXHAUSTIVE SEARCH RESULTS FOR TWO BIT-FLIPS

TABLE IV
EXHAUSTIVE SEARCH RESULTS FOR FOUR BIT-FLIPS

given values are extrapolations

The results for the case of four bit-flips are documented in
Table IV.

The percentage of errors that can be detected with just one
iteration has increased respect to the results presented in Table
III (two bit-flips). This increase is quite large and can be
explained by the higher amount of bit-flips which are not
participating in the same check sum equation. The second
cycle of the MLDD is already providing a percentage of
detection very close to 100%. Again, with the third cycle the
MLDD is capable of finding any error pattern. The case of N=
1057 is marked with an asterisk because the
results are extrapolations of the first one billion combinations.
No exhaustive results have been calculated in this case due to
the huge amount of combinations needed.

Up to this point, experiments have been oriented to prove that

all situations with four bit-flips or less can be detected. Since

having five bit-flips is not a problem (because an odd number of

errors are always correctable), the issue would be with six or

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

302

IJSER © 2013
http://www.ijser.org

IJSER

more bit-flips. The next experiments have been conducted to

explore this scenario.
From the presented codes, the code is capable of

correcting up to four errors. So, studying what happens with a
higher number of errors is not very important. For N=273 and
1057, the codes can correct up to 8 and 16 errors respectively.
Therefore, additional injection tests have been carried out with
one billion random bit-flip patterns for the case of six bit-flips
and eight bit-flips.

The results show that for N = 273 code there are 28 cases
six-bit errors and one case of eight-bit errors that were not
detected. For N = 1057 all cases were detected. In the light of
these results, the simulations for N=1057 were extended to 5
billion cases in an attempt to find errors that were not
detected. The results show no undetected errors. This means that
for er-rors affecting more than five bits, there is a very small
probability of the error not being detected in the first three
iterations. However, the values are so small that they would be
acceptable in many applications. Anyway, it is important to
notice that, in most real scenarios, erroneous words in a memory
will usually suffer a limited number of bit-flips, and cases with
M>5 are not frequent.

As a complement to the presented experiments, a theoret-
ical proof for the case of double errors is presented in the final
Appendix.

TABLE V
PERFORMANCE OF THE DIFFERENT MODELS

B. Memory Read Access Delay

The memory read access delay of the plain MLD is directly

dependent on the code size, i.e., a code with length 73 needs 73

cycles, etc. Then, two extra cycles need to be added for I/O. On

the other hand, the memory read access delay of the proposed

MLDD is only dependent on the word error rate (WER). If there

are more errors, then more words need to be fully decoded.

The detection phase of the MLDD is code-length-indepen-
dent and therefore has the same number of cycles for all N.

A summary of the performance of the three different
designs is given in Table V.

The “I/O” column represents the number of cycles the design

needs to forward the data to the registers and to read from those

registers to the output. It has the same value for all the designs.

The “detecting” column gives the actual number of cycles the

design needs to detect an error in the codeword. In the case that

there are no errors in the codeword, the designs would need, in

total, the number of cycles given in the “no errors” column

(which is the addition of the “I/O” and “detecting” columns). On

the other hand, the “errors” column gives the total number of cy-

cles needed by the design to correct the errors in the codeword.

The three designs that have been compared are the plain ML

decoder (MLD), the ML decoder with a syndrome calculator for

error detection (SFD), and the proposed MLDD. As it can be

seen, the plain MLD always needs cycles in all cases. The SFD,

however, is able to detect in just one single cycle (plus 2 of I/O)

if the codeword is error free and forward it to the output.

The performance of the proposed design is closer to that of the
SFD rather than to the MLD. It just requires three cycles to
detect any error (plus two of I/O). This result has the same
order of magnitude as the SFD, since both are independent of ,
N and, therefore, it would be feasible for very large size

codes. However, the advantage of our technique with respect
to SFD is, as it will be explained later, a more reduced area
and power requirement.
.

In the case that an error is detected, all of the techniques need

to launch the whole decoding process. For MLD and SFD, this

represents N+2 cycles (decoding cycles plus two I/O cycles).

For MLDD, the situation is the same, but, instead of N+2 cycles,

three extra cycles are needed (for a total of N+5). These three

extra cycles have been added to the process in order to simplify

the multiplexing logic of the design (see Section IV-C for more

details). It represents a negligible impact on performance, but it

provides significant savings in area.

In TableVI ,a comparison of the MLD and MLDD techniques

is provided for several values of N . Although this is only a best-

case scenario, because it is assumed that all words come without

errors, it gives the idea of how much speed-up can be obtained in

an ideal situation.

TABLE VI
SPEED-UP OF THE PROPOSED MLDD FOR ERROR FREE CODE WORDS

TABLE VII
SYNTHESIS RESULTS OF THE 3 DESIGNS FOR DIFFERENT CODE LENGTH

SIMULATION RESULT

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

303

IJSER © 2013
http://www.ijser.org

IJSER

Fig. 10. Performance of the different code lengths versus the WER.

In a real situation, a fraction of the words would have bit-
flips. This fraction is represented by the WER. Since MLDD
needs five cycles to handle correct words N+5 and for
erroneous words, the average performance would be

(2)

Using this expression, the performance of the three tech-
niques has been studied for different values of the WER.
These results can be seen in Fig. 10 for different values of N.

The first comment on these results is that the MLD
technique has the worst performance, whose value is
independent of the WER (i.e., it needs the same number of
cycles to handle correct and erroneous data).

Another comment is that the SFD version has the best per-
formance, as expected. But our proposed technique (MLDD)
is very similar in this aspect, since both values are very close.
This small performance difference is compensated for with
the area savings that MLDD provides. This difference is even
smaller for large values of N and WER.

C. Area

The previous subsection showed that the performance of the
proposed design MLDD is much faster than the plain MLD
version, but slightly lower than the design with syndrome
calculator (SFD).

As mentioned several times, this is compensated with a
clear savings in area. To study this, the three designs have
been implemented in VHDL and synthesized, for
different values of N, using a TSMC35 library. The obtained
results are depicted, in number of equivalent gates, in Table
VII.

Apart from the designs used in the previous experiments
(And), the case of has also been

Synthesized in order to provide more area information.

The conclusions on the area results are given as follows.
• The MLD design requires little area compared with the

other two designs. However, as seen before, the perfor-
mance results are not very good.

• The SFD version, which had the best performance, needs
more area than the MLD does, ranging from 25.40% to
294.94% depending on N. Notice that the increment of
area grows quicker than N does.

• The MLDD version has a very similar performance to SFD,

however it requires a much lower area overhead, ranging

from 10.16% to 0.43%.

These conclusions can be extrapolated to power. The over-
head introduced by MLDD is very small, contrary to the SFD
case.

An important final comment is that the area overhead of the
MLDD actually decreases with N with respect to the plain
MLD version. For large values of N, both areas are practically
the same. The reason for this is that the error detector in the
MLDD has been designed to be independent of the size code
N. The opposite situation occurs, with the SFD technique,
which uses syndrome calculation to perform error detection its
complexity grows quickly when the code size increases.

One of the problems to make the MLDD module independent

of N has been the mapping of the intermediate delay line values

to the output signals. The reason is that this module behaves

in two different ways depending if the processed word is

erroneous or correct. If it is correct, its output is driven after the

third cycle, what means that the word has been shifted three

positions in the line register. If it is wrong, the word has to be

fully decoded, what implies being shifted N positions. So,

both scenarios end up with the output values at different

positions of the shift register. Then some kind of multiplexing

logic would be needed to reorder the bits before mapping them to

the output. However, the area of this logic would grow with N

linearly. In order to avoid this, it has been decided to make

three extra shift movements in the case of a wrong word, in

order to align its bits with those of a correct word. After this, the

output bits are coherent in all situations, not needing multi-

plexing logic. The penalty for this solution is three extra cycles to

decode words with errors, which usually has a negligible im-

pact on performance.

That is why the MLDD technique needs N+5 cycles to
detect and correct an erroneous word, instead of N+2 cycles
(see Table V).

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

304

IJSER © 2013
http://www.ijser.org

IJSER

5. CONCLUSION

In this paper, a fault-detection mechanism, MLDD, has been

presented based on ML decoding using the DSCCs. Exhaustive

simulation test results show that the proposed technique is able to

detect any pattern of up to five bit-flips in the first three cycles of

the decoding process. This improves the performance of the

design with respect to the traditional MLD approach.

On the other hand, the MLDD error detector module has been

designed in a way that is independent of the code size. This

makes its area overhead quite reduced compared with other tra-

ditional approaches such as the syndrome calculation (SFD).

In addition, a theoretical proof of the proposed MLDD scheme

for the case of double errors has also been presented. The

extension of this proof to the case of four errors would confirm

the validity of the MLDD approach for a more general case,

something that has only been done through simulation in the

paper. This is, therefore, an interesting problem for future

research. The application of the proposed technique to memo-ries

that use scrubbing is also an interesting topic and was in fact the

original motivation that led to the MLDD scheme.

APPENDIX

The basis of the presented paper is the hypothesis that all
er-rors affecting up to five bits in a block protected by DSCC
can be detected in just three decoding cycles. This hypothesis,
which has been used to propose a more efficient design of
MLD de-coding, may seem somewhat abrupt in the way it has
been in-troduced in the paper. Initially, the authors’ goal was
to propose a quick way to perform scrubbing in protected data
blocks. The idea was to handle a reduced number of parity
check equations in each scrubbing cycle, tolerating a certain
number of errors which would be corrected in the next cycle.
Unexpectedly, the results offered the property that, in only
three decoding cycles, all errors affecting up to five bits in the
block were detected, which motivated the idea of this paper.

Although the mentioned property has been verified in
Section IV through an experimental procedure, a
mathematical demonstration for the case of double errors will
be offered at the end of this appendix. Before this, and in
order to understand the demonstration, some basic
information about the DSCC codes will be provided.

A. DSCCs

DSCCs are one-step ML decodable codes with high error-
cor-rection capability and are linear cyclic block codes

1) Perfect Difference Set: DSCCs work on the difference-set

concept for which a brief description follows. Given a set and
a difference of the elements , we have

(3)

(4)

The perfect difference set must satisfy the three following
conditions.

1) All positive differences in are distinct.
2) All negative differences in are distinct.
3) If is a negative difference in ,then

is not equal to any positive difference in .

2) DSCC Construction: For a binary code, the perfect
difference-set is constructed using the relationship

(5)

Using the set elements as powers in the terms of the polynomial

(6)

and the syndrome polynomial for the difference-set, the
cyclic code is given by the greatest common divisor of
And

(7)

Finally, the DSCC code is generated by

(8)

3) DSCC Parameters: Besides from the definitions and equa-

tions previously explained, the following parameters completely

define the DSCC codes:
• Code length: .
• Message bits: .
• Parity-check bits: .
• Minimum distance: .
As is a perfect

difference-set, not two polynomials and , given
by (9) (see [6]), can have any common term except , for

:

(9)

Thus, form a set of
polynomials orthogonal on the bit at position . This

implies that there will be parity check-sums able
to correct up to errors.

B. Detection Method Theoretical Proof for Double Errors

In a DSCC-LDPC code, the check equations used in
majority logic decoding are cyclically shifted versions of a
vector wi(X). The shift distances are also specified by the
perfect difference set of the code.

Lemma 1: Given condition 1 and 2 in A.1, the DSCC-
LDPC codes are such that there are no three consecutive
values in the difference set.

Proof: Let us suppose that there are three consecutive dif-

ferences in the set . Then, the differ-
ences And would be equal to one and therefore the
condition 1 or 2 in Section A1 would not be true.

Lemma 2: Given vector in (9), if a pair of 1’s in it is

separated by a distance , then there cannot be any more pairs
of 1’s in the same vector at a distance or .

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

305

IJSER © 2013
http://www.ijser.org

IJSER

Proof: From (9), the 1’s in occur at positions of the
form or . Therefore, distances between
pairs of 1’s in belong to the difference set , which are
unique per condition 3 in Section A1.

Theorem: Given a block protected with DSCC codes and af-
fected by two bit-flips, these can be detected in only three de-
coding cycles.

Proof: When decoding a block with two errors at a distance
, two situations may occur, given here.

1) If both errors occur in different equations, they are
detected in the first iteration.

2) If both errors occur in the same equation that corresponds
to difference , then a necessary condition in the second

iteration for the error not to be detected is that there is a

difference in the perfect difference set, as bits

are shifted by one. Otherwise, there would be an equation

with two 1’s at a distance corresponding to a difference

and another corresponding to the position of the

bits with error. This would violate Lemma 2. The same

applies to the third iteration, but this time, with Lemma 1,
such a difference does not exist, and, therefore, the error
will be detected.

REFERENCES

[1] C. W. Slayman, “Cache and memory error detection, correction, and
reduction techniques for terrestrial servers and workstations,” IEEE
Trans. Device Mater. Reliabil., vol. 5, no. 3, pp. 397–404, Sep. 2005.

[2] R. C. Baumann, “Radiation-induced soft errors in advanced semicon-
ductor technologies,” IEEE Trans. Device Mater. Reliabil., vol. 5, no.
3, pp. 301–316, Sep. 2005.

[3] J. von Neumann, “Probabilistic logics and synthesis of reliable organ-isms
from unreliable components,” Automata Studies, pp. 43–98, 1956.

[4] M. A. Bajura et al., “Models and algorithmic limits for an ECC-based
approach to hardening sub-100-nm SRAMs,” IEEE Trans. Nucl. Sci.,
vol. 54, no. 4, pp. 935–945, Aug. 2007.

[5] R. Naseer and J. Draper, “DEC ECC design to improve memory reli-
ability in sub-100 nm technologies,” in Proc. IEEE ICECS, 2008, pp.
586–589.

[6] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall, 2004.

[7] I. S. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” IRE Trans. Inf. Theory, vol. IT-4, pp. 38–49, 1954.

[8] J. L. Massey, Threshold Decoding. Cambridge, MA: MIT Press, 1963.
[9] S. Ghosh and P. D. Lincoln, “Low-density parity check codes for error

correction in nanoscale memory,” SRI Comput. Sci. Lab. Tech. Rep.
CSL-0703, 2007.

[10] B. Vasic and S. K. Chilappagari, “An information theoretical frame-
work for analysis and design of nanoscale fault-tolerant memories
based on low-density parity-check codes,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 54, no. 11, pp. 2438–2446, Nov. 2007.

[11] H. Naeimi and A. DeHon, “Fault secure encoder and decoder for
NanoMemory applications,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 17, no. 4, pp. 473–486, Apr. 2009.

[12] Y. Kato and T. Morita, “Error correction circuit using difference-set
cyclic code,” in Proc. ASP-DAC, 2003, pp. 585–586.

[13] T. Kuroda, M. Takada, T. Isobe, and O. Yamada, “Transmission
scheme of high-capacity FM multiplex broadcasting system,” IEEE
Trans. Broadcasting, vol. 42, no. 3, pp. 245–250, Sep. 1996.

[14] O. Yamada, “Development of an error-correction method for data
packet multiplexed with TV signals,” IEEE Trans. Commun., vol.
COM-35, no. 1, pp. 21–31, Jan. 1987.

[15] P. Ankolekar, S. Rosner, R. Isaac, and J. Bredow, “Multi-bit error cor-
rection methods for latency-contrained flash memory systems,” IEEE
Trans. Device Mater. Reliabil., vol. 10, no. 1, pp. 33–39, Mar. 2010.

[16] E. J. Weldon, Jr., “Difference-set cyclic codes,” Bell Syst. Tech. J.,
vol. 45, pp. 1045–1055, 1966.

[17] C. Tjhai, M. Tomlinson, M. Ambroze, and M. Ahmed, “Cyclotomic
idempotent-based binary cyclic codes,” Electron. Lett., vol. 41, no. 6,
Mar. 2005.

[18] T. Shibuya and K. Sakaniwa, “Construction of cyclic codes suitable
for iterative decoding via generating idempotents,” IEICE Trans.
Funda-mentals, vol. E86-A, no. 4, pp. 928–939, 2003.

[19] F. J. MacWilliams, “A table of primitive binary idempotents of odd
length ▲, ↨ ₃ ․₃₃,” IEEE Trans. Inf. Theory, vol. IT-25, no. 1, pp. 118–
123, Jan. 1979.

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

306

IJSER © 2013
http://www.ijser.org

IJSER

